Advertisements
Advertisements
प्रश्न
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
योग
उत्तर
Let I =
\[\int\] (tan–1 x2) x dx
Putting x2 = t
⇒ 2x dx = dt
Putting x2 = t
⇒ 2x dx = dt
\[\Rightarrow \text{ x dx }= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int 1_{II} . \tan^{- 1_I} t . dt\]
\[ = \frac{1}{2} \tan^{- 1} t\int1 \text{ dt }- \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int1 dt \right\}dt\]
\[ = \frac{1}{2} \left[ \tan^{- 1} t . t - \int \frac{t}{1 + t^2}dt \right]\]
\[\text{ Now putting }\ 1 + t^2 = p\]
\[ \Rightarrow \text{ 2t dt }= dp\]
\[ \Rightarrow \text{ t dt} = \frac{dp}{2}\]
\[ \therefore I = \frac{1}{2}t . \tan^{- 1} t - \frac{1}{2}\int \frac{t dt}{1 + t^2}\]
\[ = \frac{t . \tan^{- 1} t}{2} - \frac{1}{2 x^2} \int \frac{dp}{p}\]
\[ = \frac{t . \tan^{- 1} t}{2} - \frac{1}{4}\ln p + C\]
\[ = \frac{x^2 . \tan^{- 1} x^2}{2} - \frac{1}{4} \text{ ln }\left| 1 + x^4 \right| + C \left[ \because p = 1 + t^2 \right]\]
\[ \therefore I = \frac{1}{2}\int 1_{II} . \tan^{- 1_I} t . dt\]
\[ = \frac{1}{2} \tan^{- 1} t\int1 \text{ dt }- \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int1 dt \right\}dt\]
\[ = \frac{1}{2} \left[ \tan^{- 1} t . t - \int \frac{t}{1 + t^2}dt \right]\]
\[\text{ Now putting }\ 1 + t^2 = p\]
\[ \Rightarrow \text{ 2t dt }= dp\]
\[ \Rightarrow \text{ t dt} = \frac{dp}{2}\]
\[ \therefore I = \frac{1}{2}t . \tan^{- 1} t - \frac{1}{2}\int \frac{t dt}{1 + t^2}\]
\[ = \frac{t . \tan^{- 1} t}{2} - \frac{1}{2 x^2} \int \frac{dp}{p}\]
\[ = \frac{t . \tan^{- 1} t}{2} - \frac{1}{4}\ln p + C\]
\[ = \frac{x^2 . \tan^{- 1} x^2}{2} - \frac{1}{4} \text{ ln }\left| 1 + x^4 \right| + C \left[ \because p = 1 + t^2 \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int x^3 \cos x^4 dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
` ∫ tan^5 x sec ^4 x dx `
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]