हिंदी

∫ Tan − 1 √ 1 − X 1 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
योग

उत्तर

\[\text{ Let I } = \int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\text{ Putting  x } = \cos \theta\]

\[ \Rightarrow dx = - \text{ sin   θ   dθ}  \]

\[and\ \theta = \cos^{- 1} x\]

\[ \therefore I = \int \tan^{- 1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \left( - \sin \theta \right) d\theta\]

\[ = \int \tan^{- 1} \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - \sin \theta \right) d\theta\]

\[ = \int \tan^{- 1} \left( \tan \frac{\theta}{2} \right) \left( - \sin \theta \right) d\theta\]

\[ = - \frac{1}{2}\int \theta_I \sin_{II} \theta   d\theta\]

\[ = - \frac{1}{2}\left[ \theta\int \sin\theta d\theta - \int\left\{ \left( \frac{d}{d\theta}\theta \right)\int\sin \theta d\theta \right\}d\theta \right]\]

\[ = - \frac{1}{2} \left[ \theta\left( - \cos \theta \right) - \int 1 . \left( - \cos \theta \right) d\theta \right]\]

\[ = - \frac{1}{2} \left[ - \theta \cos \theta + \sin \theta \right] + C\]

\[ = - \frac{1}{2} \left[ - \theta . \cos \theta + \sqrt{1 - \cos^2 \theta} \right] + C\]

\[ = - \frac{1}{2}\left[ - \cos^{- 1} x . x + \sqrt{1 - x^2} \right] + C \left[ \because \theta = \cos^{- 1} x \right]\]

\[ = \frac{x \cos^{- 1} x}{2} - \frac{\sqrt{1 - x^2}}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 57 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×