हिंदी

If F' (X) = a Sin X + B Cos X and F' (0) = 4, F(0) = 3, F ( π 2 ) = 5, Find F(X) - Mathematics

Advertisements
Advertisements

प्रश्न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 
योग

उत्तर

\[f'\left( x \right) = a \ sin  x + b \cos x\]
\[f'\left( 0 \right) = 4, f\left( 0 \right) = 3\]
\[f\left( \frac{\pi}{2} \right) = 5\]
\[f'\left( x \right) = a \sin x + b \cos x\]
\[\int{f}'\left( x \right)dx = \int\left( a \sin x + b \cos x \right)dx\]
\[f\left( x \right) = - a \cos x + b \sin x + C . . . (i)\]
\[Now puting x = 0 in equation (i)\]
\[f\left( 0 \right) = - a \cos 0 + b \sin 0 + C\]
\[3 = - a \times 1 + b \times 0 + C\]
\[3 = - a + C . . . \left( ii \right)\]
\[\text{Now puting x} = \frac{\pi}{2} \text{in equation} (i)\]
\[f\left( \frac{\pi}{2} \right) = - a \cos \frac{\pi}{2} + b \sin \frac{\pi}{2} + C\]
\[5 = - a \cos\frac{\pi}{2} + b \sin \left( \frac{\pi}{2} \right) + C\]
\[5 = - a \times 0 + b \times 1 + C\]
\[5 = b + C . . . \left( iii \right)\]
\[\text{We also have }f'\left( 0 \right) = 4\]
\[f'\left( x \right) = a \sin x + b \cos x\]
\[f'\left( 0 \right) = a \sin 0 + b \cos 0\]
\[4 = a \times 0 + b \times 1\]
\[4 = b . . . \left( iv \right)\]
\[\text{solving} \left( ii \right), \left( iii \right) and \left( iv \right) \text{we get}, \]
\[b = 4\]
\[C = 1\]
\[a = - 2\]
\[ \therefore f\left( x \right) = 2\cos x + 4 \sin x + 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 48 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×