मराठी

If F' (X) = a Sin X + B Cos X and F' (0) = 4, F(0) = 3, F ( π 2 ) = 5, Find F(X) - Mathematics

Advertisements
Advertisements

प्रश्न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 
बेरीज

उत्तर

\[f'\left( x \right) = a \ sin  x + b \cos x\]
\[f'\left( 0 \right) = 4, f\left( 0 \right) = 3\]
\[f\left( \frac{\pi}{2} \right) = 5\]
\[f'\left( x \right) = a \sin x + b \cos x\]
\[\int{f}'\left( x \right)dx = \int\left( a \sin x + b \cos x \right)dx\]
\[f\left( x \right) = - a \cos x + b \sin x + C . . . (i)\]
\[Now puting x = 0 in equation (i)\]
\[f\left( 0 \right) = - a \cos 0 + b \sin 0 + C\]
\[3 = - a \times 1 + b \times 0 + C\]
\[3 = - a + C . . . \left( ii \right)\]
\[\text{Now puting x} = \frac{\pi}{2} \text{in equation} (i)\]
\[f\left( \frac{\pi}{2} \right) = - a \cos \frac{\pi}{2} + b \sin \frac{\pi}{2} + C\]
\[5 = - a \cos\frac{\pi}{2} + b \sin \left( \frac{\pi}{2} \right) + C\]
\[5 = - a \times 0 + b \times 1 + C\]
\[5 = b + C . . . \left( iii \right)\]
\[\text{We also have }f'\left( 0 \right) = 4\]
\[f'\left( x \right) = a \sin x + b \cos x\]
\[f'\left( 0 \right) = a \sin 0 + b \cos 0\]
\[4 = a \times 0 + b \times 1\]
\[4 = b . . . \left( iv \right)\]
\[\text{solving} \left( ii \right), \left( iii \right) and \left( iv \right) \text{we get}, \]
\[b = 4\]
\[C = 1\]
\[a = - 2\]
\[ \therefore f\left( x \right) = 2\cos x + 4 \sin x + 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 48 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×