मराठी

∫ 2 − 3 X √ 1 + 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
बेरीज

उत्तर

\[ \text{Let I} = \int\left( \frac{2 - 3x}{\sqrt{1 + 3x}} \right)dx\]

Putting 1 + 3x = t
⇒ 3x = t – 1

\[\text{and}\ 3dx = dt\]
\[ \Rightarrow dx = \frac{dt}{3}\]

\[\therefore I = \int\left( \frac{2 - \left( t - 1 \right)}{\sqrt{t}} \right)dt\]
\[ = \int\left( \frac{3 - t}{\sqrt{t}} \right)dt\]
\[ = \int\left( 3 t^{- \frac{1}{2}} - t^\frac{1}{2} \right)dt\]
\[ = 3\int t^{- \frac{1}{2}} dt - \int t^\frac{1}{2} dt\]
\[ = 3\left[ \frac{t^\frac{- 1}{2} + 1}{- \frac{1}{2} + 1} \right] - \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = 6\sqrt{t} - \frac{2}{3} t^\frac{3}{2} + C\]
\[ = 2\sqrt{t} \left( 3 - \frac{t}{3} \right) + C\]
\[ = 2\sqrt{t}\left( \frac{9 - t}{3} \right) + C \left[ \because t = 1 + 3x \right]\]
\[ = \frac{2}{3}\sqrt{1 + 3x} \left\{ \frac{9 - \left( 1 + 3x \right)}{3} \right\} + C\]
\[ = \frac{2}{3 \times 3}\sqrt{1 + 3x} \left( 8 - 3x \right) + C\]
\[ = \frac{2}{9}\left( 8 - 3x \right) \sqrt{1 + 3x} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.05 | Q 8 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫  sec^6   x  tan    x   dx `

` ∫      tan^5    x   dx `


\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int \log_{10} x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×