मराठी

∫ X √ X + 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x + 4}} dx\]
बेरीज

उत्तर

\[\int\frac{x}{\sqrt{x + 4}}dx\]
\[ = \int\left( \frac{x + 4 - 4}{\sqrt{x + 4}} \right)dx\]
\[ = \int\left( \sqrt{x + 4} - \frac{4}{\sqrt{x + 4}} \right)dx\]
\[ = \int \left( x + 4 \right)^\frac{1}{2} dx - 4\int \left( x + 4 \right)^{- \frac{1}{2}} dx\]


\[ = \frac{\left( x + 4 \right)^\frac{1}{2} + 1}{\frac{1}{2} + 1} - 4\frac{\left[ x + 4 \right]^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + C\]
\[ = \frac{2}{3} \left( x + 4 \right)^\frac{3}{2} - 8 \left( x + 4 \right)^\frac{1}{2} + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2}{3}\left( x + 4 \right) - 8 \right] + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2x + 8 - 24}{3} \right] + C\]
\[ = \left( x + 4 \right)^\frac{1}{2} \left[ \frac{2x - 16}{3} \right] + C\]
\[ = \frac{2}{3}\left( x - 8 \right)\sqrt{x + 4} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.05 | Q 7 | पृष्ठ ३३

संबंधित प्रश्‍न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×