मराठी

Evaluate the Following Integrals: ∫ X Cos − 1 X √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 

बेरीज

उत्तर

\[\text{ Let I } = \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\]

\[\text{ Let the first function be} \cos^{- 1} \text{ x and second function be} \frac{x}{\sqrt{1 - x^2}} . \]

\[\text{ First we find the integral of the second function}, i . e . , \int\frac{x}{\sqrt{1 - x^2}}dx . \]

\[\text{ Put t } = 1 - x^2 . Then dt = - 2xdx\]

\[\]

\[\text{ Therefore,} \]

\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]

\[ = - \sqrt{t}\]

\[ = - \sqrt{1 - x^2}\]

\[\]

\[\text{ Hence, using integration by parts, we get }\]

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = \left( \cos^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \left( \frac{d \left( \cos^{- 1} x \right)}{d x} \right)\int\left( \frac{x}{\sqrt{1 - x^2}}dx \right) \right]dx\]

\[ = \left( \cos^{- 1} x \right)\left( - \sqrt{1 - x^2} \right) - \int\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\left( - \sqrt{1 - x^2} \right)dx\]

\[ = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]

\[\]

\[\]

\[\text{ Hence}, \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 27 | पृष्ठ १३३

संबंधित प्रश्‍न

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×