Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
उत्तर
\[\text{ Let I } = \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\]
\[\text{ Let the first function be} \cos^{- 1} \text{ x and second function be} \frac{x}{\sqrt{1 - x^2}} . \]
\[\text{ First we find the integral of the second function}, i . e . , \int\frac{x}{\sqrt{1 - x^2}}dx . \]
\[\text{ Put t } = 1 - x^2 . Then dt = - 2xdx\]
\[\]
\[\text{ Therefore,} \]
\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]
\[ = - \sqrt{t}\]
\[ = - \sqrt{1 - x^2}\]
\[\]
\[\text{ Hence, using integration by parts, we get }\]
\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = \left( \cos^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \left( \frac{d \left( \cos^{- 1} x \right)}{d x} \right)\int\left( \frac{x}{\sqrt{1 - x^2}}dx \right) \right]dx\]
\[ = \left( \cos^{- 1} x \right)\left( - \sqrt{1 - x^2} \right) - \int\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\left( - \sqrt{1 - x^2} \right)dx\]
\[ = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]
\[\]
\[\]
\[\text{ Hence}, \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]
APPEARS IN
संबंधित प्रश्न
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)