Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{2\cos x - 3\sin x}{6\cos x + 4\sin x}dx\]
\[ \Rightarrow \int\frac{2\cos x - 3\sin x}{2\left( 3\cos x + 2\sin x \right)}dt\]
\[Let, 3\cos x + 2\sin x = t\]
\[ \Rightarrow 2\cos x - 3\sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 2\cos x - 3\sin x \right)dx = dt\]
\[Now, \int\frac{2\cos x - 3\sin x}{2\left( 3\cos x + 2\sin x \right)}dt\]
\[ = \int\frac{dt}{2t}\]
\[ = \frac{1}{2}\text{log}\left| t \right| + C\]
\[ = \frac{1}{2} \text{log} \left| 3\cos x + 2\sin x \right| + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`