मराठी

Evaluate the Following Integral: ∫ X 2 ( X 2 + 4 ) ( X 2 + 9 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]
बेरीज

उत्तर

\[\text{Let }I = \int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

We express

\[\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)} = \frac{Ax + B}{x^2 + 4} + \frac{Cx + D}{x^2 + 9}\]

\[ \Rightarrow x^2 = \left( Ax + B \right)\left( x^2 + 9 \right) + \left( Cx + D \right)\left( x^2 + 4 \right)\]

Equating the coefficients of `x^3 , x^2 , x` and constants, we get

\[0 = A + C\text{ and }1 = B + D\text{ and }0 = 9A + 4C\text{ and }0 = 9B + 4D\]

\[\text{or }A = 0\text{ and }B = - \frac{4}{5}\text{ and }C = 0\text{ and }D = \frac{9}{5}\]

\[ \therefore I = \int\left( \frac{- \frac{4}{5}}{x^2 + 4} + \frac{\frac{9}{5}}{x^2 + 9} \right)dx\]

\[ = - \frac{4}{5}\int\frac{1}{x^2 + 4}dx + \frac{9}{5}\int\frac{1}{x^2 + 9} dx\]

\[ = - \frac{4}{5} \times \frac{1}{2} \tan^{- 1} \frac{x}{2} + \frac{9}{5} \times \frac{1}{3} \tan^{- 1} \frac{x}{3} + c\]

\[ = - \frac{2}{5} \tan^{- 1} \frac{x}{2} + \frac{3}{5} \tan^{- 1} \frac{x}{3} + c\]

\[\text{Hence, }\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx = - \frac{2}{5} \tan^{- 1} \frac{x}{2} + \frac{3}{5} \tan^{- 1} \frac{x}{3} + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 18 | पृष्ठ १७६

संबंधित प्रश्‍न

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×