मराठी

Evaluate the Following Integral: ∫ X 2 X 4 − X 2 − 12 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 

बेरीज

उत्तर

\[\text{Let }I = \int\frac{x^2}{x^4 - x^2 - 12}dx\]

We express

\[\frac{x^2}{x^4 - x^2 - 12} = \frac{x^2}{x^4 - 4 x^2 + 3 x^2 - 12}\]

\[ = \frac{x^2}{\left( x^2 - 4 \right)\left( x^2 + 3 \right)}\]
\[ = \frac{A}{x^2 - 4} + \frac{B}{x^2 + 3}\]
\[ \Rightarrow x^2 = A\left( x^2 + 3 \right) + B\left( x^2 - 4 \right)\]

Equating the coefficients of `x^2` and constants, we get

\[1 = A + B\text{ and }0 = 3A - 4B\]
\[\text{or }A = \frac{4}{7}\text{ and }B = \frac{3}{7}\]
\[ \therefore I = \int\left( \frac{\frac{4}{7}}{x^2 - 4} + \frac{\frac{3}{7}}{x^2 + 3} \right)dx\]
\[ = \frac{4}{7}\int\frac{1}{x^2 - 4}dx + \frac{3}{7}\int\frac{1}{x^2 + 3} dx\]
\[ = \frac{4}{7} \times \frac{1}{4}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]
\[ = \frac{1}{7}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]
\[\text{Hence, }\int\frac{x^2}{x^4 - x^2 - 12}dx = \frac{1}{7}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 66 | पृष्ठ १७८

संबंधित प्रश्‍न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×