मराठी

Evaluate the Following Integrals: ∫ Log X ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 

बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\log x}{\left( x + 1 \right)^2}dx\]
`  "Let the first function be ( log x ) and second function be   "1/(x+1)^2"   "   `
\[\text{First we find the integral of the second function, i . e} . , \int\frac{1}{\left( x + 1 \right)^2}dx . \]
\[\text{ Put t } = \left( x + 1 \right) . Then dt = dx\]
\[\text{ Therefore,} \]
\[\int\frac{1}{\left( x + 1 \right)^2}dx = \int t^{- 2} dt\]
\[ = - \frac{1}{t}\]
\[ = - \frac{1}{1 + x}\]
\[\text{Hence, using integration by parts, we get}\]
\[\int\frac{\log x}{\left( x + 1 \right)^2}dx = \left( \log x \right)\int\frac{1}{\left( x + 1 \right)^2}dx - \int\left[ \left( \frac{d \left( \log x  \right)}{d x} \right)\int\frac{1}{\left( x + 1 \right)^2}dx \right]dx\]
\[ = \left( \log x \right)\left( - \frac{1}{1 + x} \right) - \int\left( \frac{1}{x} \right)\left( - \frac{1}{1 + x} \right)dx\]
\[ = - \frac{\log x}{1 + x} + \int\left( \frac{1}{x^2 + x} \right)dx\]
\[ = - \frac{\log x}{1 + x} + \int\frac{1}{x^2 + x + \frac{1}{4} - \frac{1}{4}}dx\]
\[ = - \frac{\log x}{1 + x} + \int\frac{1}{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\log x}{1 + x} + \frac{1}{2 \times \frac{1}{2}}\text{ log }\left| \frac{x + \frac{1}{2} - \frac{1}{2}}{x + \frac{1}{2} + \frac{1}{2}} \right| + c\]
\[ = - \frac{\log x}{1 + x} + \text{ log }\left| \frac{x}{x + 1} \right| + c\]
\[\text{ Hence,} \int\frac{\log x}{\left( x + 1 \right)^2}dx = - \frac{\log x}{1 + x} + \text{ log}\left| \frac{x}{x + 1} \right| + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 28 | पृष्ठ १३३

संबंधित प्रश्‍न

`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×