Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
उत्तर
\[\text{ Let I }= \int\frac{\log x}{\left( x + 1 \right)^2}dx\]
` "Let the first function be ( log x ) and second function be "1/(x+1)^2" " `
\[\text{First we find the integral of the second function, i . e} . , \int\frac{1}{\left( x + 1 \right)^2}dx . \]
\[\text{ Put t } = \left( x + 1 \right) . Then dt = dx\]
\[\text{ Therefore,} \]
\[\int\frac{1}{\left( x + 1 \right)^2}dx = \int t^{- 2} dt\]
\[ = - \frac{1}{t}\]
\[ = - \frac{1}{1 + x}\]
\[\text{Hence, using integration by parts, we get}\]
\[\int\frac{\log x}{\left( x + 1 \right)^2}dx = \left( \log x \right)\int\frac{1}{\left( x + 1 \right)^2}dx - \int\left[ \left( \frac{d \left( \log x \right)}{d x} \right)\int\frac{1}{\left( x + 1 \right)^2}dx \right]dx\]
\[ = \left( \log x \right)\left( - \frac{1}{1 + x} \right) - \int\left( \frac{1}{x} \right)\left( - \frac{1}{1 + x} \right)dx\]
\[ = - \frac{\log x}{1 + x} + \int\left( \frac{1}{x^2 + x} \right)dx\]
\[ = - \frac{\log x}{1 + x} + \int\frac{1}{x^2 + x + \frac{1}{4} - \frac{1}{4}}dx\]
\[ = - \frac{\log x}{1 + x} + \int\frac{1}{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\log x}{1 + x} + \frac{1}{2 \times \frac{1}{2}}\text{ log }\left| \frac{x + \frac{1}{2} - \frac{1}{2}}{x + \frac{1}{2} + \frac{1}{2}} \right| + c\]
\[ = - \frac{\log x}{1 + x} + \text{ log }\left| \frac{x}{x + 1} \right| + c\]
\[\text{ Hence,} \int\frac{\log x}{\left( x + 1 \right)^2}dx = - \frac{\log x}{1 + x} + \text{ log}\left| \frac{x}{x + 1} \right| + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)