हिंदी

Evaluate the Following Integrals: ∫ Log X ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 

योग

उत्तर

\[\text{ Let I }= \int\frac{\log x}{\left( x + 1 \right)^2}dx\]
`  "Let the first function be ( log x ) and second function be   "1/(x+1)^2"   "   `
\[\text{First we find the integral of the second function, i . e} . , \int\frac{1}{\left( x + 1 \right)^2}dx . \]
\[\text{ Put t } = \left( x + 1 \right) . Then dt = dx\]
\[\text{ Therefore,} \]
\[\int\frac{1}{\left( x + 1 \right)^2}dx = \int t^{- 2} dt\]
\[ = - \frac{1}{t}\]
\[ = - \frac{1}{1 + x}\]
\[\text{Hence, using integration by parts, we get}\]
\[\int\frac{\log x}{\left( x + 1 \right)^2}dx = \left( \log x \right)\int\frac{1}{\left( x + 1 \right)^2}dx - \int\left[ \left( \frac{d \left( \log x  \right)}{d x} \right)\int\frac{1}{\left( x + 1 \right)^2}dx \right]dx\]
\[ = \left( \log x \right)\left( - \frac{1}{1 + x} \right) - \int\left( \frac{1}{x} \right)\left( - \frac{1}{1 + x} \right)dx\]
\[ = - \frac{\log x}{1 + x} + \int\left( \frac{1}{x^2 + x} \right)dx\]
\[ = - \frac{\log x}{1 + x} + \int\frac{1}{x^2 + x + \frac{1}{4} - \frac{1}{4}}dx\]
\[ = - \frac{\log x}{1 + x} + \int\frac{1}{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\log x}{1 + x} + \frac{1}{2 \times \frac{1}{2}}\text{ log }\left| \frac{x + \frac{1}{2} - \frac{1}{2}}{x + \frac{1}{2} + \frac{1}{2}} \right| + c\]
\[ = - \frac{\log x}{1 + x} + \text{ log }\left| \frac{x}{x + 1} \right| + c\]
\[\text{ Hence,} \int\frac{\log x}{\left( x + 1 \right)^2}dx = - \frac{\log x}{1 + x} + \text{ log}\left| \frac{x}{x + 1} \right| + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 28 | पृष्ठ १३३

संबंधित प्रश्न

Evaluate : `int_0^3dx/(9+x^2)`


Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×