हिंदी

Evaluate the Following Integrals: ∫ X Cos − 1 X √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 

योग

उत्तर

\[\text{ Let I } = \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\]

\[\text{ Let the first function be} \cos^{- 1} \text{ x and second function be} \frac{x}{\sqrt{1 - x^2}} . \]

\[\text{ First we find the integral of the second function}, i . e . , \int\frac{x}{\sqrt{1 - x^2}}dx . \]

\[\text{ Put t } = 1 - x^2 . Then dt = - 2xdx\]

\[\]

\[\text{ Therefore,} \]

\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]

\[ = - \sqrt{t}\]

\[ = - \sqrt{1 - x^2}\]

\[\]

\[\text{ Hence, using integration by parts, we get }\]

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = \left( \cos^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \left( \frac{d \left( \cos^{- 1} x \right)}{d x} \right)\int\left( \frac{x}{\sqrt{1 - x^2}}dx \right) \right]dx\]

\[ = \left( \cos^{- 1} x \right)\left( - \sqrt{1 - x^2} \right) - \int\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\left( - \sqrt{1 - x^2} \right)dx\]

\[ = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]

\[\]

\[\]

\[\text{ Hence}, \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 27 | पृष्ठ १३३

संबंधित प्रश्न

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×