Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
उत्तर
Let I = `int sqrt(2"a"x - x^2) "d"x`
= `int sqrt(-(x^2 - 2"a"x)) "d"x`
= `int sqrt(-(x^2 - 2"a"x + "a"^2 - "a"^2)) "d"x`
= `int sqrt(-[(x - "a")^2 - "a"^2]) "d"x`
= `int sqrt("a"^2 - (x - "a")^2) "d"x`
= `(x - "a")/2 sqrt("a"^2 - x^2) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"` ......`[because int sqrt("a"^2 - x^2) "d"x = x/2sqrt("a"^2 - x^2) - "a"^2/2 sin^-1 x/"a" + "C"]`
= `(x - "a")/2 sqrt("a"^2 - (x^2 - 2"a"x + "a"^2)) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"`
= `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1 9(x - "a"0/"a") + "C"`
Hence, I = `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`