Advertisements
Advertisements
Question
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Solution
Let I = `int sqrt(2"a"x - x^2) "d"x`
= `int sqrt(-(x^2 - 2"a"x)) "d"x`
= `int sqrt(-(x^2 - 2"a"x + "a"^2 - "a"^2)) "d"x`
= `int sqrt(-[(x - "a")^2 - "a"^2]) "d"x`
= `int sqrt("a"^2 - (x - "a")^2) "d"x`
= `(x - "a")/2 sqrt("a"^2 - x^2) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"` ......`[because int sqrt("a"^2 - x^2) "d"x = x/2sqrt("a"^2 - x^2) - "a"^2/2 sin^-1 x/"a" + "C"]`
= `(x - "a")/2 sqrt("a"^2 - (x^2 - 2"a"x + "a"^2)) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"`
= `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1 9(x - "a"0/"a") + "C"`
Hence, I = `(x - "a")/2 sqrt(2"a"x - x^2) + "a"^2/2 sin^-1 ((x - "a")/"a") + "C"`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)