English

∫ X 3 ( X 2 + 1 ) 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]
Sum

Solution

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]
\[ = \int\frac{x^2 . x}{\left( x^2 + 1 \right)^3}dx\]
\[\text{Let }x^2 + 1 = t\]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow \text{2x dx} = dt\]
\[ \Rightarrow\text{ x dx} = \frac{dt}{2}\]
\[Now, \int\frac{x^2 . x}{\left( x^2 + 1 \right)^3}dx\]
\[ = \frac{1}{2}\int\frac{\left( t - 1 \right)}{t^3}dt\]
\[ = \frac{1}{2}\int\left( \frac{1}{t^2} - \frac{1}{t^3} \right) dt\]
\[ = \frac{1}{2}\int\left( t^{- 2} - t^{- 3} \right)dt\]
\[ = \frac{1}{2}\left[ \frac{t^{- 2 + 1}}{- 2 + 1} - \frac{t^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \frac{1}{2}\left[ - \frac{1}{t} + \frac{1}{2 t^2} \right] + C\]
\[ = \frac{1}{2}\left[ \frac{- 1}{\left( x^2 + 1 \right)} + \frac{1}{2 \left( x^2 + 1 \right)^2} \right] + C\]
\[ = \frac{1}{2}\left[ \frac{- 2 \left( x^2 + 1 \right) + 1}{2 \left( x^2 + 1 \right)^2} \right]\]
\[ = \frac{1}{4}\left[ \frac{- 2 x^2 - 2 + 1}{\left( x^2 + 1 \right)^2} \right] = - \frac{1}{4}\frac{\left( 1 + 2 x^2 \right)}{\left( x^2 + 1 \right)^2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 20 | Page 58

RELATED QUESTIONS

Evaluate : `int_0^3dx/(9+x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×