English

∫ 1 C O S X + C O S E C X D X - Mathematics

Advertisements
Advertisements

Question

`  ∫    {1} / {cos x  + "cosec x" } dx  `
Sum

Solution

` \text{ Let  I }= ∫    {1} / {cos x  + "cosec x" } dx  `
`  ∫    {sin x} / {1 +cos x  + sin x } dx  ` 


`  ∫    {2 sin x} / { 2 + 2 cos  x  +sin x  } dx  `

 


`  ∫  {sin x + cos x + sin x - cos x }/ {2 + 2 cos x  sin x } dx  `


` ∫  {sin x + cos x  }/ {2 + 2 cos x  sin x } dx + ∫ {sin x - cos x} /{2 + 2 cos x  sin x } dx `


` ∫  {sin x + cos x  }/ {3 - sin^2 x -cos^2x+2 cos  x sin x} dx + ∫ {sin x - cos x} /{1 + sin^2 x + cos^2 x + 2cos x sin x } dx `
` ∫  {sin x + cos x  }/ {3 -( sin x -cos x )^2} dx + ∫ {sin x - cos x} /{1 + (sin x+ cos x + )^2} dx `
 where,` I_1 =  ∫  {sin x + cos x  }/ {3 -( sin x -cos x )^2} dx    and       I_2  =∫ {sin x - cos x} /{1 + (sin x+ cos x + )^2} dx `
\[Now, \]

` I_1 =  ∫  {sin x + cos x  }/ {3 -( sin x -cos x )^2} dx  `
` Let  ( sin x -cos x ) `
On differentiating both sides, we get

`(  cos x + sin x )dx = dt `
\[ \therefore I_1 = \int\frac{1}{3 - \left( t \right)^2}dt\]
\[ = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + t}{\sqrt{3} - t} \right| + c_1 \]
\[ = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \left( \sin x - \cos x \right)} \right| + c_1 . . . (2)\]
\[Now, \]
\[ I_2 = \int\frac{\sin x - \cos x}{1 + \left( \sin x + \cos x \right)^2}dx\]
\[ Let \left( \sin x + \cos x \right) = t\]
 On  differentiating bothsides, weget
\[ \left( \cos x - \sin x \right)dx = dt\]
\[ \therefore I_2 = - \int\frac{1}{1 + \left( t \right)^2}dt\]
\[ = - \tan^{- 1} t + c_2 \]
\[ = - \tan^{- 1} \left( \sin x + \cos x \right) + c_2 . . . (3)\]
` "On substituting (2) and (3) in (1), we get" `
\[I = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \sin x + \cos x} \right| - \ tan^{- 1} \left( \sin x + \cos x \right) + c\]
\[Hence, \int\frac{1}{\cos x + cosec\ x}dx = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \sin x + \cos\ x} \right| - \tan^{- 1} \left( \sin x + \ cos\ x \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.16 [Page 90]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.16 | Q 15 | Page 90

RELATED QUESTIONS

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×