Advertisements
Advertisements
Question
Solution
` \text{ Let I }= ∫ {1} / {cos x + "cosec x" } dx `
` ∫ {sin x} / {1 +cos x + sin x } dx `
` ∫ {2 sin x} / { 2 + 2 cos x +sin x } dx `
` ∫ {sin x + cos x + sin x - cos x }/ {2 + 2 cos x sin x } dx `
` ∫ {sin x + cos x }/ {2 + 2 cos x sin x } dx + ∫ {sin x - cos x} /{2 + 2 cos x sin x } dx `
` ∫ {sin x + cos x }/ {3 - sin^2 x -cos^2x+2 cos x sin x} dx + ∫ {sin x - cos x} /{1 + sin^2 x + cos^2 x + 2cos x sin x } dx `
` ∫ {sin x + cos x }/ {3 -( sin x -cos x )^2} dx + ∫ {sin x - cos x} /{1 + (sin x+ cos x + )^2} dx `
where,` I_1 = ∫ {sin x + cos x }/ {3 -( sin x -cos x )^2} dx and I_2 =∫ {sin x - cos x} /{1 + (sin x+ cos x + )^2} dx `
\[Now, \]
` I_1 = ∫ {sin x + cos x }/ {3 -( sin x -cos x )^2} dx `
` Let ( sin x -cos x ) `
On differentiating both sides, we get
`( cos x + sin x )dx = dt `
\[ \therefore I_1 = \int\frac{1}{3 - \left( t \right)^2}dt\]
\[ = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + t}{\sqrt{3} - t} \right| + c_1 \]
\[ = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \left( \sin x - \cos x \right)} \right| + c_1 . . . (2)\]
\[Now, \]
\[ I_2 = \int\frac{\sin x - \cos x}{1 + \left( \sin x + \cos x \right)^2}dx\]
\[ Let \left( \sin x + \cos x \right) = t\]
On differentiating bothsides, weget
\[ \left( \cos x - \sin x \right)dx = dt\]
\[ \therefore I_2 = - \int\frac{1}{1 + \left( t \right)^2}dt\]
\[ = - \tan^{- 1} t + c_2 \]
\[ = - \tan^{- 1} \left( \sin x + \cos x \right) + c_2 . . . (3)\]
` "On substituting (2) and (3) in (1), we get" `
\[I = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \sin x + \cos x} \right| - \ tan^{- 1} \left( \sin x + \cos x \right) + c\]
\[Hence, \int\frac{1}{\cos x + cosec\ x}dx = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \sin x + \cos\ x} \right| - \tan^{- 1} \left( \sin x + \ cos\ x \right) + c\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)