English

∫ Tan X Sec 2 X √ 1 − Tan 2 X D X - Mathematics

Advertisements
Advertisements

Question

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `
Sum

Solution

\[\int\tan x \cdot \sec^2 x \sqrt{1 - \tan^2 x} dx\]
\[\text{Let} \tan x = t\]
\[ \Rightarrow \text{sec}^2 \text{x dx }= dt\]
Now,  `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `
\[ = \     ∫     t \cdot \sqrt{1 - t^2}dt\]
` "Again let "  t^2 = p `
\[ \Rightarrow \text{2t dt} = dp\]
\[ \Rightarrow \text{t dt} = \frac{dp}{2}\]
\[Again, \ ∫   t \cdot \sqrt{1 - t^2}dt\]
\[ = \frac{1}{2}\int\sqrt{1 - p}    \text{dp}\]
\[ = \frac{1}{2}\int \left( 1 - p \right)^\frac{1}{2} \text{dp}\]
\[ = \frac{1}{2}\left[ \frac{\left( 1 - p \right)^\frac{1}{2} + 1}{\left( \frac{1}{2} + 1 \right) \left( - 1 \right)} \right] + C\]
\[ = \frac{1}{2} \times \frac{- 2}{3} \left( 1 - p \right)^\frac{3}{2} + C\]
\[ = - \frac{1}{3} \left( 1 - p \right)^\frac{3}{2} + C\]
\[ = - \frac{1}{3} \left( 1 - \tan^2 x \right)^\frac{3}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 41 | Page 58

RELATED QUESTIONS

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\sin x \cos^2 x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×