English

∫ ( X + 1 X ) ( X + Log X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
Sum

Solution

\[\int\left( \frac{x + 1}{x} \right) \cdot \left( x + \log x \right)^2 dx\]
\[\text{Let x} + \log x = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x} \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( \frac{x + 1}{x} \right) dx = dt\]
\[Now, \int\left( \frac{x + 1}{x} \right) \cdot \left( x + \log x \right)^2 dx\]
\[ = \int t^2 dt\]
\[ = \frac{t^3}{3} + C\]
\[ = \frac{\left( x + \log x \right)^3}{3} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 40 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x^3}{x - 2} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \tan^4 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×