Advertisements
Advertisements
Question
` ∫ 1/ {1+ cos 3x} ` dx
Sum
Solution
` ∫ 1/ {1+ cos 3x} ` dx
\[ = \int\frac{\left( 1 - \cos 3x \right)}{\left( 1 + \text{cos 3x} \right) \left( 1 - \cos 3x \right)}dx\]
\[ = \int\left( \frac{1 - \cos 3x}{1 - \cos^2 3x} \right) dx\]
\[ = \int\left( \frac{1 - \cos 3x}{\sin^2 3x} \right) dx\]
\[ = \int \text{cosec}^\text{2}\text{ 3x dx} - ∫cosec\ 3x \cot 3xdx\]
` = - {cot 3x} / 3 + {"cosec " 3x} / 3 + c `
` = 1/3 [ "cosec" 3x - cot 3x ] + c `
\[ = \frac{1}{3}\left[ \frac{1}{\sin 3x} - \frac{\cos 3x}{\sin 3x} \right] + C\]
\[ = \frac{1}{3} \left[ \frac{1 - \cos 3x}{\sin 3x} \right] + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
` ∫ cos 3x cos 4x` dx
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\cos\sqrt{x}\ dx\]
` ∫ x tan ^2 x dx
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .