Advertisements
Advertisements
Question
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
Sum
Solution
\[\text{ Let I }= \int\frac{dx}{4 x^2 + 4x + 1 + 4}\]
\[ = \int\frac{dx}{\left( 2x \right)^2 + 2 \times 2x + 1 + 22}\]
\[ = \int\frac{dx}{\left( 2x + 1 \right)^2 + 2^2}\]
\[\text{ Putting }\left( 2x + 1 \right) = t\]
\[ \Rightarrow 2 \text{ dx = dt }\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t^2 + 2^2}\]
\[ = \frac{1}{2} \times \frac{1}{2} \text{ tan}^{- 1} \left( \frac{t}{2} \right) + C\]
\[ = \frac{1}{4} \text{ tan}^{- 1} \left( \frac{2x + 1}{2} \right) + C ....................\left[ \because t = \left( 2x + 1 \right) \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int \sin^4 2x\ dx\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int \tan^3 x\ \sec^4 x\ dx\]