English

∫ 1 √ X 2 + a 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
Sum

Solution

\[\text{ Let  I } = \int\frac{dx}{\sqrt{x^2 - a^2}}\]

\[\text{ Putting  x} = a \tan \theta\]

\[ \Rightarrow dx = a \sec^2  \text{ θ   dθ }\]

\[ \therefore I = \int\frac{a \cdot se c^2\text{ θ   dθ }}{\sqrt{a^2 \tan^2 \theta + a^2}}\]

\[ = \int\frac{a \sec^2 \theta \cdot d\theta}{a\sqrt{1 + \tan^2 \theta}}\]

\[ = \int\frac{\sec^2 \theta \cdot \text{    dθ }}{\sec\theta}\]

\[ = \int\sec\theta \cdot d\theta\]

\[ = \int\sec\theta \cdot d\theta\]

\[ = \text{ ln } \left| \sec\theta + \tan\theta \right| + C\]

\[ = \text{ ln }\left| \sec\theta + \sqrt{\sec^2 \theta - 1} \right| + C\]

\[ = \text{ ln }\left| \frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1} \right| + C\]

\[ = \text{ ln} \left| x + \sqrt{x^2 - a^2} \right| - \ln a + C\]

\[ = \text{ ln }\left| x + \sqrt{x^2 - a^2} \right| + C'\]

\[\text{ where C' = C -  ln  a }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 43 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x \sin x \cos 2x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×