English

∫ X 4 + X 4 D X is Equal to (A) 1 4 Tan − 1 X 2 + C (B) 1 4 Tan − 1 ( X 2 2 ) (C) 1 2 Tan − 1 ( X 2 2 ) (D) None of These - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

Options

  • \[\frac{1}{4} \tan^{- 1} x^2 + C\]

  • \[\frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

  • \[\frac{1}{2} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

  • none of these

MCQ

Solution

 \[\frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

\[\text{ Let  I } = \int\frac{x}{4 + x^4}dx\]

\[ = \int\frac{x \text{ dx}}{2^2 + \left( x^2 \right)^2}\]

\[\text{ Putting  x}^2 = t\]

\[ \Rightarrow 2x \text{ dx} = dt\]

\[ \Rightarrow x \text{ dx } = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dt}{2^2 + t^2}\]

\[ = \frac{1}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{t}{2} \right) + C \left( \because \int\frac{1}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} \right)\]

\[ = \frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right) + C \left( \because t = x^2 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 199]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 1 | Page 199

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x^3}{x - 2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x e^x \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \cos^3 (3x)\ dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×