English

∫ Tan 2 X Tan 3 X Tan 5 X D X - Mathematics

Advertisements
Advertisements

Question

` ∫  tan 2x tan 3x  tan 5x    dx  `
Sum

Solution

\[We\ know\ that, \]
\[ \tan 5x = \tan \left( 2x + 3x \right)\]
\[ \Rightarrow \tan 5x = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x}\]
\[ \Rightarrow \tan 5x - \tan 2x \tan 3x \tan 5x = \tan 2x + \tan 3x\]
\[ \Rightarrow \tan 2x \tan 3x \tan 5x = \tan 5x - \tan 2x - \tan 3x\]
\[ \therefore \int\tan 2x \tan 3x \tan 5x = \int\left( \tan 5x - \tan 2x - \tan 3x \right)dx\]
\[ = \frac{1}{5} \ln \left| \sec 5x \right| - \frac{1}{2} \ln \left| \sec 2x \right| - \frac{1}{3} \ln \left| \sec 3x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 46 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int x^3 \cos x^4 dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×