Advertisements
Advertisements
Question
` ∫ tan 2x tan 3x tan 5x dx `
Sum
Solution
\[We\ know\ that, \]
\[ \tan 5x = \tan \left( 2x + 3x \right)\]
\[ \Rightarrow \tan 5x = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x}\]
\[ \Rightarrow \tan 5x - \tan 2x \tan 3x \tan 5x = \tan 2x + \tan 3x\]
\[ \Rightarrow \tan 2x \tan 3x \tan 5x = \tan 5x - \tan 2x - \tan 3x\]
\[ \therefore \int\tan 2x \tan 3x \tan 5x = \int\left( \tan 5x - \tan 2x - \tan 3x \right)dx\]
\[ = \frac{1}{5} \ln \left| \sec 5x \right| - \frac{1}{2} \ln \left| \sec 2x \right| - \frac{1}{3} \ln \left| \sec 3x \right| + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int x^3 \cos x^4 dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]