Advertisements
Advertisements
Question
Solution
\[\int\frac{\text{ 2x } dx}{\left( 2 + x - x^2 \right)}\]
\[2x = A\frac{d}{dx}\left( 2 + x - x^2 \right) + B\]
\[2x = A \left( 0 + 1 - 2x \right) + B\]
\[2x = \left( - 2 A \right) x + A + B\]
Comparing the Coefficients of like powers of x
\[- 2\text{ A }= 2\]
\[A = - 1\]
\[A + B = 0\]
\[ - 1 + B = 0\]
\[B = 1\]
Now ` ∫ { 2x dx }/ {(2 + x - x^2 )}`
`=∫ ({-1 ( 1 - 2x ) + 1 } / { -x^2 + x + 2 }) dx`
\[ = - \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx + \int\frac{dx}{- x^2 + x + 2}\]
\[ = - I_1 + I_2 . . . \left( 1 \right) \left( say \right) where\]
\[ I_1 = \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx\]
\[ I_2 = \int\frac{dx}{- x^2 + x + 2}\]
\[ I_1 = \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx\]
\[\text{ let }- x^2 + x + 2 = t\]
\[ \Rightarrow \left( 1 - 2x \right) dx = dt\]
\[ I_1 = \int\frac{dt}{t}\]
\[ I_1 = \text{ log } \left| t \right| + C_1 \]
\[ = \text{ log } \left| 2 + x - x^2 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dx}{- x^2 + x + 2}\]
\[ I_2 = \int\frac{- dx}{x^2 - x - 2}\]
\[ I_2 = \int\frac{- dx}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 2}\]
\[ I_2 = \int\frac{- dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2}\]
\[ I_2 = - \frac{1}{2 \times \frac{3}{2}}\text{ log }\left| \frac{x - \frac{1}{2} - \frac{3}{2}}{x - \frac{1}{2} + \frac{3}{2}} \right| + C_2 \]
\[ I_2 = - \frac{1}{3} \text{ log }\left| \frac{x - 2}{x + 1} \right| + C_2 . . . \left( 3 \right)\]
\[\text{ from } \left( 1 \right) \left( 2 \right)\text{ and }\left( 3 \right)\]
\[\int\left( \frac{2x}{2 + x - x^2} \right)dx = - \text{ log } \left| 2 + x - x^2 \right| - \frac{1}{3}\text{ log }\left| \frac{x - 2}{x + 1} \right| + C_1 + C_2 \]
\[ = - \text{ log } \left| 2 + x - x^2 \right| + \frac{1}{3} \log \left| \frac{1 + x}{x - 2} \right| + C\]
\[\text{ where } C = C_1 + C_2\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int {cosec}^4 2x\ dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]