Advertisements
Advertisements
Question
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
Options
- \[\sin^{- 1} \sqrt{x} + C\]
- \[\sin^{- 1} \left\{ \sqrt{x} - \sqrt{x \left( 1 - x \right)} \right\} + C\]
- \[\sin^{- 1} \left\{ \sqrt{x \left( 1 - x \right)} \right\} + C\]
- \[\sin^{- 1} \sqrt{x} - \sqrt{x \left( 1 - x \right)} + C\]
Solution
\[\text{Putting }\sqrt{x} = \sin \theta\]
\[ \Rightarrow x = \sin^2 \theta\]
\[ \Rightarrow dx = 2 \sin \theta \cos \theta d\theta\]
\[ \Rightarrow dx = \sin \left( 2\theta \right) d\theta\]
\[ \therefore I = \int\sqrt{\frac{\sin^2 \theta}{1 - \sin^2 \theta}} \times \sin \left( 2\theta \right) \cdot d\theta\]
\[ = \int\frac{\sin \theta}{\cos \theta} \times 2 \sin \theta \cdot \cos \theta d\theta\]
\[ = \int2 \sin^2 \theta \cdot d\theta\]
\[ = \int\left( 1 - \cos 2\theta \right)d\theta\]
\[ = \theta - \frac{\sin \left( 2\theta \right)}{2} + C\]
\[ = \theta - \frac{2 \sin \theta \cos \theta}{2} + C \]
\[ = \theta - \sin \theta \sqrt{1 - \sin^2 \theta} + C\]
\[ = \sin^{- 1} \sqrt{x} - \sqrt{x} \sqrt{1 - x} + C ...........\left( \because \theta = \sin^{- 1} \sqrt{x} \right)\]
\[ = \sin^{- 1} \sqrt{x} - \sqrt{x\left( 1 - x \right)} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]