English

∫ √ X 1 − X D X is Equal to - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to

Options

  • \[\sin^{- 1} \sqrt{x} + C\]
  • \[\sin^{- 1} \left\{ \sqrt{x} - \sqrt{x \left( 1 - x \right)} \right\} + C\]
  • \[\sin^{- 1} \left\{ \sqrt{x \left( 1 - x \right)} \right\} + C\]
  • \[\sin^{- 1} \sqrt{x} - \sqrt{x \left( 1 - x \right)} + C\]
MCQ

Solution

\[\sin^{- 1} \sqrt{x} - \sqrt{x \left( 1 - x \right)} + C\]
 
 
\[\text{Let }I = \int\sqrt{\frac{x}{1 - x}}dx\]

\[\text{Putting }\sqrt{x} = \sin \theta\]

\[ \Rightarrow x = \sin^2 \theta\]

\[ \Rightarrow dx = 2 \sin \theta \cos \theta d\theta\]

\[ \Rightarrow dx = \sin \left( 2\theta \right) d\theta\]

\[ \therefore I = \int\sqrt{\frac{\sin^2 \theta}{1 - \sin^2 \theta}} \times \sin \left( 2\theta \right) \cdot d\theta\]

\[ = \int\frac{\sin \theta}{\cos \theta} \times 2 \sin \theta \cdot \cos \theta d\theta\]

\[ = \int2 \sin^2 \theta \cdot d\theta\]

\[ = \int\left( 1 - \cos 2\theta \right)d\theta\]

\[ = \theta - \frac{\sin \left( 2\theta \right)}{2} + C\]

\[ = \theta - \frac{2 \sin \theta \cos \theta}{2} + C \]

\[ = \theta - \sin \theta \sqrt{1 - \sin^2 \theta} + C\]

\[ = \sin^{- 1} \sqrt{x} - \sqrt{x} \sqrt{1 - x} + C ...........\left( \because \theta = \sin^{- 1} \sqrt{x} \right)\]

\[ = \sin^{- 1} \sqrt{x} - \sqrt{x\left( 1 - x \right)} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 202]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 26 | Page 202

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×