English

∫ X + 1 √ 4 + 5 X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{\left( x + 1 \right) dx}{\sqrt{4 + 5x - x^2}}\]
\[\text{ Also,} x + 1 = A \frac{d}{dx} \left( 4 + 5x - x^2 \right) + B\]
\[x + 1 = A \left( 5 - 2x \right) + B\]
\[x + 1 = \left( - 2A \right) x + 5A + B\]
\[\text{Equating Coefficients of like terms}\]
\[ - 2A = 1\]
\[ \Rightarrow A = - \frac{1}{2}\]
\[\text{ And }\]
\[5A + B = 1\]
\[ \Rightarrow - \frac{5}{2} + B = 1\]
\[B = \frac{7}{2}\]
\[I = \int\frac{\left( x + 1 \right) dx}{\sqrt{4 + 5x - x^2}}\]
\[ = \int\left( \frac{- \frac{1}{2} \left( 5 - 2x \right) + \frac{7}{2}}{\sqrt{4 + 5x - x^2}} \right)dx\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left( x^2 - 5x \right)}}\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left[ x^2 - 5x + \left( \frac{5}{2} \right)^2 - \left( \frac{5}{2} \right)^2 \right]}}\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left( x - \frac{5}{2} \right)^2 + \frac{25}{4}}}\]
\[ = - \frac{1}{2}\int\left( \frac{5 - 2x}{\sqrt{4 + 5x - x^2}} \right)dx + \frac{7}{2}\int\frac{dx}{\sqrt{\frac{41}{4} - \left( x - \frac{5}{2} \right)^2}}\]
\[ = - \frac{1}{2}\int\left( \frac{5 - 2x}{\sqrt{4 + 5x - x^2}} \right)dx + \frac{7}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{5}{2} \right)^2}}\]
\[\text{ let } 4 + 5x - x^2 = t\]
\[ \Rightarrow \left( 5 - 2x \right) dx = dt\]
\[\text
{Then }, \]
\[I = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \frac{7}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{5}{2} \right)^2}}\]
\[ = - \frac{1}{2} \times 2\sqrt{t} + \frac{7}{2} \times \sin^{- 1} \left( \frac{x - \frac{5}{2}}{\frac{\sqrt{41}}{2}} \right) + C\]
\[ = - \sqrt{t} + \frac{7}{2} \sin^{- 1} \left( \frac{2x - 5}{\sqrt{41}} \right) + C\]
\[ = - \sqrt{4 + 5x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{2x - 5}{\sqrt{41}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 3 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^\sqrt{x} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×