Advertisements
Advertisements
Question
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
Sum
Solution
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^\frac{1}{3}} \right)dx\]
\[ = \int 2^x dx + 5 \int\frac{dx}{x} - \int\frac{dx}{x^\frac{1}{3}}\]
\[ = \int 2^x dx + 5 \int\frac{dx}{x} - \int x^{- \frac{1}{3}} dx\]
\[ = \frac{2^x}{\ln 2} + 5 \ln x - \left[ \frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1} \right] + C\]
\[ = \frac{2^x}{\ln 2} + 5 \ln x - \frac{3}{2} x^\frac{2}{3} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int \cot^5 x \text{ dx }\]
\[\int \cot^6 x \text{ dx }\]
\[\int \sin^5 x \text{ dx }\]
\[\int \sin^3 x \cos^6 x \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int x \sin x \cos x\ dx\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]