Advertisements
Advertisements
Question
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
Sum
Solution
\[\int \left( \frac{\cos^2 x - \sin^2 x}{\sqrt{1 + \cos 4x}} \right)dx\]
`= ∫(\text{ cos ( 2x )} ) / sqrt{2 cos^2 ( 2x ) } dx [ ∴ 1 + cos A = 2 cos^2 (A / 2) & cos^2 A - sin^2 A = cos 2A ]`
\[ = \frac{1}{\sqrt{2}}\int\left( \frac{\cos 2x}{\cos 2x} \right)dx\]
\[ = \frac{1}{\sqrt{2}}\left[ x \right] + C\]
\[ = \frac{x}{\sqrt{2}} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{e^{2x}}{1 + e^x} dx\]
` ∫ tan x sec^4 x dx `
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int x \sin x \cos 2x\ dx\]
\[\int x \cos^3 x\ dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int \tan^4 x\ dx\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`