Advertisements
Advertisements
Question
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
Sum
Solution
\[\int\frac{\cot x}{\text{cosec x }- \cot x}dx\]
\[ = \int\frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x} - \frac{\cos x}{\sin x}}dx\]
\[ = \int\left( \frac{\cos x}{1 - \cos x} \right) \times \frac{\left( 1 + \cos x \right)}{\left( 1 + \cos x \right)}dx\]
\[ = \int\left( \frac{\cos x + \cos^2 x}{1 - \cos^2 x} \right)dx\]
\[ = \int\left( \frac{\cos x + \cos^2 x}{\sin^2 x} \right) dx\]
\[ = \int\left( \frac{\cos x}{\sin x} \times \frac{1}{\sin x} + \frac{\cos^2 x}{\sin^2 x} \right)dx\]
\[ = \int\left[ \left( \text{cot x cosec x} \right) + \cot^2 x \right]dx\]
\[ = \int\left[ \text{cosec x cot x }+ {cosec}^2 x - 1 \right]dx\]
\[ = -\text{ cosec x} - \cot x - x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int \sec^6 x\ dx\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]