English

∫ Cos X 1 − Cos X D X O R ∫ Cot X C O S E C X − Cot X D X - Mathematics

Advertisements
Advertisements

Question

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]
Sum

Solution

\[\int\frac{\cot x}{\text{cosec x }- \cot x}dx\]
\[ = \int\frac{\frac{\cos x}{\sin x}}{\frac{1}{\sin x} - \frac{\cos x}{\sin x}}dx\]
\[ = \int\left( \frac{\cos x}{1 - \cos x} \right) \times \frac{\left( 1 + \cos x \right)}{\left( 1 + \cos x \right)}dx\]
\[ = \int\left( \frac{\cos x + \cos^2 x}{1 - \cos^2 x} \right)dx\]
\[ = \int\left( \frac{\cos x + \cos^2 x}{\sin^2 x} \right) dx\]
\[ = \int\left( \frac{\cos x}{\sin x} \times \frac{1}{\sin x} + \frac{\cos^2 x}{\sin^2 x} \right)dx\]
\[ = \int\left[ \left( \text{cot x cosec x} \right) + \cot^2 x \right]dx\]
\[ = \int\left[ \text{cosec x cot x }+ {cosec}^2 x - 1 \right]dx\]
\[ = -\text{ cosec x} - \cot x - x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 27 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sec^6 x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×