English

∫ Cos X Sin 2 X + 4 Sin X + 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
Sum

Solution

` ∫ { cos  x  dx}/{sin^2 x + 4\sin x + 5}`
\[\text{ let }\sin x = t\]
\[ \Rightarrow \text{cos x dx }= dt\]
Now, ` ∫ { cos  x  dx}/{sin^2 x + 4\sin x + 5}`
\[ = \int\frac{dt}{t^2 + 4t + 5}\]
\[ = \int\frac{dt}{t^2 + 2 \times t \times 2 + 4 + 1}\]
\[ = \int\frac{dt}{\left( t + 2 \right)^2 + 1^2}\]
\[ = \frac{1}{1} \tan^{- 1} \left( \frac{t + 2}{1} \right) + C\]
\[ = \tan^{- 1} \left( \sin x + 2 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.16 [Page 90]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.16 | Q 3 | Page 90

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×