Advertisements
Advertisements
Question
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
Sum
Solution
` ∫ { cos x dx}/{sin^2 x + 4\sin x + 5}`
\[\text{ let }\sin x = t\]
\[ \Rightarrow \text{cos x dx }= dt\]
Now, ` ∫ { cos x dx}/{sin^2 x + 4\sin x + 5}`
\[ = \int\frac{dt}{t^2 + 4t + 5}\]
\[ = \int\frac{dt}{t^2 + 2 \times t \times 2 + 4 + 1}\]
\[ = \int\frac{dt}{\left( t + 2 \right)^2 + 1^2}\]
\[ = \frac{1}{1} \tan^{- 1} \left( \frac{t + 2}{1} \right) + C\]
\[ = \tan^{- 1} \left( \sin x + 2 \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]