English

∫ E X ( Tan X − Log Cos X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int e^x \left( \tan x - \log \cos x \right) dx\]
Sum

Solution

\[\text{ Let I } = \int e^x \left( \tan x - \log \cos x \right)dx\]

\[\text{ here }f(x) = - \text{ log 
}\text{ cos x Put e} ^x f(x) = t\]

\[ \Rightarrow f'(x) = \tan x\]

\[\text{let - e}^x \text{ log }\text{ cos x } = t\]

\[\text{ Diff both  sides  w . r . t x }\]

\[ - \left[ e^x \text{ log }\left( \text{ cos x } \right) + e^x \frac{1}{\cos x} \times \left( - \sin x \right) \right] = \frac{dt}{dx}\]

\[ \Rightarrow \left[ - e^x \text{ log }\left( \text{ cos x } \right) + e^x \tan x \right]dx = dt\]

\[ \therefore \int e^x \left( \tan x - \text{ log }\cos x \right)dx = \int dt\]

\[ = t + C\]

\[ = - e^x \text{ log }\left( \text{ cos x }\right) + C\]

\[ = e^x \text{ log }\left( \sec x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 7 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^2 \sin^2 x\ dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×