English

∫ 1 ( X − 1 ) √ X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
Sum

Solution

\[\text{ We  have, } \]
\[I = \int \frac{dx}{\left( x - 1 \right) \sqrt{x^2 + 1}}\]
\[\text{ Putting  x }- 1 = \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int\frac{- \frac{1}{t^2}dt}{\left( \frac{1}{t} \right) \sqrt{\left( 1 + \frac{1}{t} \right)^2 + 1}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\sqrt{1 + \frac{1}{t^2} + \frac{2}{t} + 1}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\frac{\sqrt{t^2 + 1 + 2t + t^2}}{t}}\]
\[ = \int \frac{- dt}{\sqrt{2 t^2 + 2t + 1}}\]
\[ = - \frac{1}{\sqrt{2}} \int \frac{dt}{\sqrt{t^2 + t + \frac{1}{2}}}\]
\[ = - \frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{t^2 + t + \frac{1}{4} - \frac{1}{4} + \frac{1}{2}}}\]
\[ = - \frac{1}{\sqrt{2}} \int \frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{\sqrt{2}}\text{ log }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 + \frac{1}{4}} \right| + \text{ C where t} = \frac{1}{x - 1}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 8 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×