English

∫ sin x + cos x sin 4 x + cos 4 x dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{\left( \sin^2 x + \cos^2 x \right)^2 - 2 \sin^2 x \cos^2 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - 2 \sin^2 x \cos^2 x} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - \frac{1}{2} \left( 2\sin x \cos x \right)^2} \text{ dx }\]
\[ = \int\frac{\sin x + \cos x}{1 - \frac{1}{2} \sin^2 2x}\text{ dx }\]

\[\text{ Putting  sin x - cos x = t} . . . . . \left( 1 \right)\]
\[ \Rightarrow \left( \sin x - \cos x \right)^2 = t^2 \]
\[ \Rightarrow \sin^2 x + \cos^2 x - 2\sin x \cos x = t^2 \]
\[ \Rightarrow 1 - 2\sin x \cos x = t^2 \]
\[ \Rightarrow \sin 2x = 1 - t^2 \]
\[\text{Differentiating} \left( 1 \right), \text{we get}\]
\[\left( \cos x + \sin x \right)dx = \text{ dt }\]
\[ \therefore I = \int\frac{1}{1 - \frac{1}{2} \left( 1 - t^2 \right)^2}\text{  dt }\]
\[ = \int\frac{2}{2 - \left( 1 - t^2 \right)^2} \text{ dt }\]
\[ = \int\frac{2}{\left( \sqrt{2} \right)^2 - \left( 1 - t^2 \right)^2} \text{ dt }\]
\[ = 2\int\frac{1}{\left( \sqrt{2} + 1 - t^2 \right)\left( \sqrt{2} - 1 + t^2 \right)} \text{ dt}\]

\[= \frac{2}{2\sqrt{2}}\int\left[ \frac{1}{\sqrt{2} + 1 - t^2} + \frac{1}{\sqrt{2} - 1 + t^2} \right]\text{ dt}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{1}{\sqrt{2} + 1 - t^2} \text{ dt}+ \frac{1}{\sqrt{2}}\int\frac{1}{\sqrt{2} - 1 + t^2} \text{ dt}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{1}{\left( \sqrt{\sqrt{2} + 1} \right)^2 - t^2} \text{ dt}+ \frac{1}{\sqrt{2}}\int\frac{1}{\left( \sqrt{\sqrt{2} - 1} \right)^2 + t^2} \text{ dt}\]
\[ = \frac{1}{\sqrt{2}} \times \frac{1}{2\sqrt{\sqrt{2} + 1}}\text{ log }\left| \frac{\sqrt{\sqrt{2} + 1} + t}{\sqrt{\sqrt{2} + 1} - t} \right| + \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{\sqrt{2} + 1}} \tan^{- 1} \frac{t}{\sqrt{\sqrt{2} + 1}} + C\]
\[ = \frac{1}{\sqrt{2}}\left[ \frac{1}{2\sqrt{\sqrt{2} + 1}}\text{ log }\left| \frac{\sqrt{\sqrt{2} + 1} + t}{\sqrt{\sqrt{2} + 1} - t} \right| + \frac{1}{\sqrt{\sqrt{2} + 1}} \tan^{- 1} \frac{t}{\sqrt{\sqrt{2} + 1}} \right] + C, \text{ where t = sin x - cos x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 107 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{x^3}{x - 2} dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x \text{ sin 2x dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \sec^6 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×