English

∫ X Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x \text{ sin 2x dx }\]
Sum

Solution

\[\int x \text{ sin 2x dx }\]
` "Taking x as the first function and sin 2x as the second function  " `.
\[ = x\int\text{ sin 2x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx }\right\}dx\]
\[ = \frac{- x \cos 2x}{2} + \int\frac{\cos 2x}{2}dx\]
\[ = \frac{- x \cos 2x}{2} + \frac{\sin 2x}{4} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 9 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \cos^2 \text{nx dx}\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×