We have,
I=∫xdx(x+1)(x2+1)
Let Let x(x+1)(x2+1)=Ax+1+Bx+Cx2+1
⇒x(x+1)(x2+1)=A(x2+1)+(Bx+C)(x+1)(x+1)(x2+1)
⇒x=A(x2+1)+Bx2+Bx+Cx+C
⇒x=(A+B)x2+(B+C)x+(A+C)
Equating coefficients of like termsEquating coefficients of like terms
A+B=0.....(1)
B+C=1.....(2)
A+C=0.....(3)
Solving (1), (2) and (3), we getSolving (1), (2) and (3), we get
A=−12
B=12
C=12
∴x(x+1)(x2+1)=−12(x+1)+x2+12x2+1
⇒∫xdx(x+1)(x2+1)=−12∫dxx+1+12∫xdxx2+1+12∫dxx2+1
Let Let x2+1=t
⇒2xdx=dt
⇒xdx=dt2
∴I=−12∫dxx+1+14∫dtt+12∫dxx2+12
=−12log|x+1|+14log|t|+12tan−1x+C′
=−12log|x+1|+14log|x2+1|+12tan−1x+C′
∫ 1x13(x13-1) dx
sin 3x dx ∫sinxsin2x sin 3x dx