Advertisements
Advertisements
Question
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
Sum
Solution
` Let I = ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ 1 / {x^{2/3} - x^{1/3}} ` dx
\[ \text{Let x }= t^3 \]
\[ \text{On differentiating both sides, we get}\]
\[ dx = 3 t^2 \text{ dt }\]
` ∴ I = ƒ {3 t^2}/ {( t^3 )^\{2/3} - ( t^3)^{1/3}} dt `
\[ = \int\frac{3 t^2}{t^2 - t}dt\]
\[ = 3\int\frac{t}{t - 1}dt\]
\[ = 3\int\frac{\left( t - 1 \right) + 1}{t - 1}dt\]
\[ = 3\int\left[ \left( 1 \right) + \frac{1}{t - 1} \right]dt\]
\[ = 3\left[ t + \text{ log }\left( t - 1 \right) \right] + c\]
` = 3 x ^{1/3 } + 3 log ( x^{1/3} -1 ) + c `
Hence, ` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} dx = 3x^{1/3} + 3 log ( x^{1/3} -1 ) + c `
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]