English

∫ 2 X − 3 ( X 2 − 1 ) ( 2 X + 3 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
Sum

Solution

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)}dx\]
\[ = \int\frac{\left( 2x - 3 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)}dx\]
\[\text{Let }\frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{2x + 3}\]
\[ \Rightarrow \frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{A \left( x + 1 \right) \left( 2x + 3 \right) + B \left( x + 1 \right) \left( 2x + 3 \right) + C \left( x^2 - 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)}\]
\[ \Rightarrow 2x - 3 = A \left( x + 1 \right) \left( 2x + 3 \right) + B \left( x - 1 \right) \left( 2x + 3 \right) + C \left( x + 1 \right) \left( x - 1 \right) ...........(1)\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (1)}\]
\[ \Rightarrow - 2 - 3 = B \left( - 1 - 1 \right) \left( - 2 + 3 \right)\]
\[ \Rightarrow - 5 = B \left( - 2 \right) \left( 1 \right)\]
\[ \Rightarrow B = \frac{5}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (1)}\]
\[ \Rightarrow 2 - 3 = A \left( 1 + 1 \right) \left( 2 + 3 \right)\]
\[ \Rightarrow - 1 = A \left( 2 \right) \left( 5 \right)\]
\[ \Rightarrow A = \frac{- 1}{10}\]
\[\text{Putting }2x + 3 = 0\text{ or }x = \frac{- 3}{2}\text{ in eq. (1)}\]
\[ \Rightarrow 2 \times - \frac{3}{2} - 3 = A \times 0 + B \times 0 + C\left( - \frac{3}{2} + 1 \right) \left( \frac{- 3}{2} - 1 \right)\]
\[ \Rightarrow - 6 = C \left( - \frac{1}{2} \right) \left( \frac{- 5}{2} \right)\]
\[ \Rightarrow C = - \frac{24}{5}\]
\[ \therefore \frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{- 1}{10 \left( x - 1 \right)} + \frac{5}{2 \left( x + 1 \right)} - \frac{24}{5 \left( 2x + 3 \right)}\]
\[ \Rightarrow \int\frac{\left( 2x - 3 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} dx = \frac{- 1}{10}\int\frac{1}{x - 1}dx + \frac{5}{2}\int\frac{1}{x + 1}dx - \frac{24}{5}\int\frac{1}{2x + 3}dx\]
\[ = \frac{- 1}{10} \ln \left| x - 1 \right| + \frac{5}{2} \ln \left| x + 1 \right| - \frac{24}{5} \ln \frac{\left| 2x + 3 \right|}{3} + C\]
\[ = - \frac{1}{10} \ln \left| x - 1 \right| + \frac{5}{2} \ln \left| x + 1 \right| - \frac{12}{5} \ln \left| 2x + 3 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 9 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

`∫     cos ^4  2x   dx `


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^2 \sin^2 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×