English

∫ X 2 − 3 X + 1 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
Sum

Solution

\[\text{ We have,} \]
\[I = \int\left( \frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \right)dx\]
\[ = \int\frac{\left( x^2 + 1 \right)dx}{x^4 + x^2 + 1} - 3\int\frac{x \text{ dx}}{x^4 + x^2 + 1} . . . . . \left( 1 \right)\]
\[ = I_1 - 3 I_2 \text{ where I}_1 = \int\frac{\left( x^2 + 1 \right)dx}{x^4 + x^2 + 1}, I_2 = \int\frac{x dx}{x^4 + x^2 + 1}\]
\[ I_1 = \int\left( \frac{x^2 + 1}{x^4 + x^2 + 1} \right)dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[ I_1 = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 1}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} - 2 + 3}\]
\[ = \int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{3} \right)^2}\]
\[\text{ Let x} - \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[ \therefore I_1 = \int\frac{dt}{t^2 + \left( \sqrt{3} \right)^2}\]
\[ I_1 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) + C_1 \]
\[ I_1 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) + C_1 . . . . . \left( 2 \right)\]
\[ I_2 = \int\frac{x \text{ dx }}{x^4 + x^2 + 1}\]
\[\text{ Putting  x}^2 = t\]
\[ \Rightarrow 2x\text{ dx } = dt\]
\[ \Rightarrow x \text { dx }= \frac{dt}{2}\]
\[ \therefore I_2 = \frac{1}{2}\int\frac{dt}{t^2 + t + 1}\]
\[ = \frac{1}{2}\int\frac{dt}{t^2 + t + \frac{1}{4} + \frac{3}{4}}\]
\[ = \frac{1}{2}\int\frac{dt}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{\frac{\sqrt{3}}{2}} \times \frac{1}{2}\left[ \tan^{- 1} \left( \frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) \right] + C_2 \]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2t + 1}{\sqrt{3}} \right) + C_2 \]
\[ I_2 = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + C_2 . . . \left( 3 \right)\]
\[\text{ From  equating} \left( 1 \right), \left( 2 \right) \text{ and } \left( 3 \right) \text{ we have}\]
\[I = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{3}} \right) + C_1 - 3 \times \left[ \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + C_2 \right]\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{3}x} \right) - \sqrt{3} \tan^{- 1} \left( \frac{2 x^2 + 1}{\sqrt{3}} \right) + \text{ C where C = C}_1 + 3 C_2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.31 [Page 190]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.31 | Q 5 | Page 190

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×