English

∫ Cos 2 X − 1 Cos 2 X + 1 D X = - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

Options

  • tan x − x + C

  • x + tan x + C

  • x − tan x + C

  • − x − cot x + C

MCQ

Solution

x − tan x + C

\[\int\left( \frac{\cos 2x - 1}{\cos 2x + 1} \right)dx\]

\[ = \int\left( \frac{1 - 2 \sin^2 x - 1}{2 \cos^2 x - 1 + 1} \right)dx\]

\[ = - \int \tan^2 x dx\]

\[ = - \int\left( \sec^2 x - 1 \right)dx\]

\[ = \int\left( 1 - \sec^2 x \right)dx\]

\[ = x - \tan x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 202]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 30 | Page 202

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


`int 1/(cos x - sin x)dx`

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×