Advertisements
Advertisements
Question
\[\int {cosec}^4 2x\ dx\]
Solution
\[\text{ Let I } = \int {cosec}^4 \text{ 2x dx}\]
\[ = \int {cosec}^2 \text{ 2x } \cdot {cosec}^2 \text{ 2x dx }\]
\[ = \int\left( 1 + \cot^2 2x \right) \cdot {cosec}^2 \text{ 2x dx }\]
\[\text{ Putting cot 2x = t}\]
\[ \Rightarrow - {cosec}^2 \left( 2x \right) \cdot \text{ 2 dx = dt}\]
\[ \Rightarrow {cosec}^2 \left( 2x \right) \cdot dx = \frac{- dt}{2}\]
\[ \therefore I = - \frac{1}{2}\int\left( 1 + t^2 \right) \cdot dt\]
\[ = - \frac{1}{2} \left[ t + \frac{t^3}{3} \right] + C\]
\[ = - \frac{1}{2}\cot 2x + \frac{1}{6} \cot^3 2x + C ...........\left[ \because t = \cot 2x \right]\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
Evaluate the following integrals:
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]