English

∫ X 2 X 2 + 6 X + 12 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{x^2 dx}{x^2 + 6x + 12}\]
\[\text{ Now }, \]

\[\text{ Therefore }, \]
\[\frac{x^2}{x^2 + 6x + 12} = 1 - \frac{\left( 6x + 12 \right)}{x^2 + 6x + 12} . . . . . \left( 1 \right)\]
\[\text { Let 6x } + 12 = A\frac{d}{dx} \left( x^2 + 6x + 12 \right) + B\]
\[ \Rightarrow 6x + 12 = A \left( 2x + 6 \right) + B\]
\[ \Rightarrow 6x + 12 = \left( 2A \right) x + 6A + B\]
\[\text{ Equating Coefficients of like terms }]\]
\[2A = 6\]
\[A = 3\]
\[6A + B = 12\]
\[18 + B = 12\]
\[B = - 6\]
\[ \therefore \frac{x^2}{x^2 + 6x + 12} = 1 - \frac{3 \left( 2x + 6 \right) - 6}{x^2 + 6x + 12}\]
\[I = \int\frac{x^2 dx}{x^2 + 6x + 12}\]
\[ = \int dx - 3\int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{x^2 + 6x + 12}\]
\[ = \int dx - 3 \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{x^2 + 6x + 9 + 3}\]
\[ = \int dx - 3\int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 12} + 6\int\frac{dx}{\left( x + 3 \right)^2 + \left( \sqrt{3} \right)^2}\]
\[ = x - 3 \text{ log } \left| x^2 + 6x + 12 \right| + \frac{6}{\sqrt{3}} \text{ tan }^{- 1} \left( \frac{x + 3}{\sqrt{3}} \right) + C\]
\[ = x - 3 \text{ log } \left| x^2 + 6x + 12 \right| + 2\sqrt{3} \text{ tan }^{- 1} \left( \frac{x + 3}{\sqrt{3}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.2 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 10 | Page 106

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫      tan^5    x   dx `


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×