Advertisements
Advertisements
Question
\[\int x^3 \text{ log x dx }\]
Sum
Solution
\[\int x^3 \text{ log x dx }\]
\[\text{Taking log x as the first function and x^3 as the second function} . \]
\[ = \log x\int x^3 dx - \int\left( \frac{d}{dx}\log x\int x^3 dx \right)dx\]
\[ = \left( \log x \right)\frac{x^4}{4} - \int\frac{1}{x}\left( \frac{x^4}{4} \right)dx\]
\[ = \frac{x^4}{x} \log x - \frac{x^4}{16} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int \sin^2\text{ b x dx}\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int \cot^5 x \text{ dx }\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`