English

∫ 1 E X + 1 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{e^x + 1} \text{ dx }\]
Sum

Solution

\[\int\frac{1}{e^x + 1}dx . . . (1)\]

Multiplying numerator and Denominator of eq (1) by ex

\[\Rightarrow \int\frac{e^x \cdot dx}{e^x \left( e^x + 1 \right)}\]
\[\text{ Putting e}^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \Rightarrow \int\frac{dt}{t \left( t + 1 \right)}\]
\[ \therefore \frac{1}{t \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]
\[\frac{1}{t \left( t + 1 \right)} = \frac{A \left( t + 1 \right) + B t}{t \left( t + 1 \right)} . . . (2)\]
\[ \Rightarrow 1 = A \left( t + 1 \right) + B t\]
\[\text{ Putting  t } + 1\ = 0\text{ or}\, t\ = - 1\text{ in  eq  (2)  we  get}  , \]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{ Now , putting  t = 0  in  eq  (2) we get , } \]
\[ \Rightarrow 1 = A \left( 0 + 1 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[\text{ Putting  the  values  of  A  and  B  in eq (2) we  get } , \]
\[\frac{1}{t \left( t + 1 \right)} = \frac{1}{t} - \frac{1}{t + 1}\]
\[ \therefore \int\frac{dt}{t \left( t + 1 \right)} = \int\frac{dt}{t} - \int\frac{dt}{t + 1}\]
\[ = \text{ ln }\left| t \right| - \text{ ln }\left| t + 1 \right| + C\]
\[ = \text{ ln }\left| \frac{t}{t + 1} \right| + C\]
\[ = \text{ ln }\left| \frac{e^x}{e^x + 1} \right| + C\]
\[ = \text{ ln }e^x - \text{ ln }\left| e^x + 1 \right| + C\]
\[ = x - \text{ ln} \left| e^x + 1 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 16 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \cot^4 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×