Advertisements
Advertisements
Question
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
Sum
Solution
\[\text{ Let I } = \int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}}dx\]
\[\text{ Putting sin}^{- 1} x = t\]
\[ \Rightarrow \frac{dx}{\sqrt{1 - x^2}} = dt\]
\[ \therefore I = \int t^3 \cdot dt\]
\[ = \frac{t^4}{4} + C\]
\[ = \frac{\left( \sin^{- 1} x \right)^4}{4} + C......... \left( \because t = \sin^{- 1} x \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int x^3 \sin x^4 dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int \sec^6 x\ dx\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]