Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int \left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\text{ Also }, 2x + 3 = \lambda\frac{d}{dx}\left( x^2 + 4x + 3 \right) + \mu\]
\[ \Rightarrow 2x + 3 = \lambda\left( 2x + 4 \right) + \mu\]
\[ \Rightarrow 2x + 3 = \left( 2\lambda \right)x + 4\lambda + \mu\]
\[\text{Equating coefficient of like terms} . \]
\[2\lambda = 2 \]
\[ \Rightarrow \lambda = 1\]
\[\text{ And }\]
\[4\lambda + \mu = 3\]
\[ \Rightarrow 4 + \mu = 3\]
\[ \Rightarrow \mu = - 1\]
\[ \therefore I = \int \left( 2x + 4 - 1 \right) \sqrt{x^2 + 4x + 3}\text{ dx }\]
\[ = \int \left( 2x + 4 \right) \sqrt{x^2 + 4x + 3}dx - \int\sqrt{x^2 + 4x + 3} \text{ dx }\]
\[ = \int \left( 2x + 4 \right) \sqrt{x^2 + 4x + 3} \text{ dx }- \int\sqrt{x^2 + 4x + 4 - 1} \text{ dx }\]
\[ = \int\left( 2x + 4 \right) \sqrt{x^2 + 4x + 3dx} - \int\sqrt{\left( x + 2 \right)^2 - 1^2} \text{ dx }\]
\[\text{ Let x}^2 + 4x + 3 = t\]
\[ \Rightarrow \left( 2x + 4 \right)dx = dt\]
\[\text{ Then,} \]
\[I = \int\sqrt{t}\text{ dt }- \int\sqrt{\left( x + 2 \right)^2 - 1^2} dx\]
\[ = \frac{2}{3} t^\frac{3}{2} - \left[ \frac{x + 2}{2}\sqrt{\left( x + 2 \right)^2 - 1} - \frac{1^2}{2}\text{ log } \left| \left( x + 2 \right) + \sqrt{\left( x + 2 \right)^2 - 1} \right| \right] + C\]
\[ = \frac{2}{3} \left( x^2 + 4x + 3 \right)^\frac{3}{2} - \frac{1}{2}\left[ \left( x + 2 \right) \sqrt{x^2 + 4x + 3} - \text{ log} \left| \left( x + 2 \right) + \sqrt{x^2 + 4x + 3} \right| \right] + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ 1/ {1+ cos 3x} ` dx
Integrate the following integrals:
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
Evaluate the following integral:
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]