English

∫ ( 2 X + 3 ) √ X 2 + 4 X + 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]
Sum

Solution

\[\text{ Let I } = \int \left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]
\[\text{    Also }, 2x + 3 = \lambda\frac{d}{dx}\left( x^2 + 4x + 3 \right) + \mu\]
\[ \Rightarrow 2x + 3 = \lambda\left( 2x + 4 \right) + \mu\]
\[ \Rightarrow 2x + 3 = \left( 2\lambda \right)x + 4\lambda + \mu\]
\[\text{Equating coefficient of like terms} . \]
\[2\lambda = 2 \]
\[ \Rightarrow \lambda = 1\]
\[\text{ And }\]
\[4\lambda + \mu = 3\]
\[ \Rightarrow 4 + \mu = 3\]
\[ \Rightarrow \mu = - 1\]
\[ \therefore I = \int \left( 2x + 4 - 1 \right) \sqrt{x^2 + 4x + 3}\text{  dx }\]
\[ = \int \left( 2x + 4 \right) \sqrt{x^2 + 4x + 3}dx - \int\sqrt{x^2 + 4x + 3} \text{  dx }\]
\[ = \int \left( 2x + 4 \right) \sqrt{x^2 + 4x + 3} \text{  dx }- \int\sqrt{x^2 + 4x + 4 - 1} \text{  dx }\]
\[ = \int\left( 2x + 4 \right) \sqrt{x^2 + 4x + 3dx} - \int\sqrt{\left( x + 2 \right)^2 - 1^2} \text{  dx }\]
\[\text{ Let x}^2 + 4x + 3 = t\]
\[ \Rightarrow \left( 2x + 4 \right)dx = dt\]
\[\text{ Then,} \]
\[I = \int\sqrt{t}\text{  dt }- \int\sqrt{\left( x + 2 \right)^2 - 1^2} dx\]
\[ = \frac{2}{3} t^\frac{3}{2} - \left[ \frac{x + 2}{2}\sqrt{\left( x + 2 \right)^2 - 1} - \frac{1^2}{2}\text{ log } \left| \left( x + 2 \right) + \sqrt{\left( x + 2 \right)^2 - 1} \right| \right] + C\]
\[ = \frac{2}{3} \left( x^2 + 4x + 3 \right)^\frac{3}{2} - \frac{1}{2}\left[ \left( x + 2 \right) \sqrt{x^2 + 4x + 3} - \text{ log} \left| \left( x + 2 \right) + \sqrt{x^2 + 4x + 3} \right| \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 8 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×