English

∫ X X 3 − 1 Dx - Mathematics

Advertisements
Advertisements

Question

xx31 dx
Sum

Solution

We have,
I= x dxx31
= x dx(x1)(x2+x+1)
 Letx(x1)(x2+x+1)=Ax1+Bx+Cx2+x+1
x(x1)(x2+x+1)=A(x2+x+1)+(Bx+C)(x1)(x1)(x2+x+1)
x=A(x2+x+1)+Bx2Bx+CxC
x=(A+B)x2+(AB+C)x+AC
Equating Coefficient of like terms
A+B=0.....(1)
AB+C=1.....(2)
AC=0.....(3)
Solving(1),(2) and (3),we get
A=13
B=13
C=13
x(x1)(x2+x+1)=13(x1)+13x+13x2+x+1
=13(x1)+13[x+1x2+x+1]
=13(x1)13[x1x2+x+1]
=13(x1)16[2x2x2+x+1]
=13(x1)16[2x+1x2+x+1]16×3x2+x+1
=13(x1)16[2x+1x2+x+1]+12×1x2+x+1
I=13dxx116(2x+1)dxx2+x+1+12dxx2+x+1414+1
 Putting x2+x+1=t
(2x+1)dx=dt
I=13 log |x1|16 log|t|+12dx(x+12)2+(32)2
=13 log|x1|16 log|x2+x+1|+12[23 tan1(x+1232)]+C
=13 log |x1|16 log|x2+x+1|+13 tan1(2x+13)+C

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 123 | Page 205

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.