We haveWe have, x dxI=∫ x dxx3−1 x dx=∫ x dx(x−1)(x2+x+1) Let Letx(x−1)(x2+x+1)=Ax−1+Bx+Cx2+x+1⇒x(x−1)(x2+x+1)=A(x2+x+1)+(Bx+C)(x−1)(x−1)(x2+x+1)⇒x=A(x2+x+1)+Bx2−Bx+Cx−C⇒x=(A+B)x2+(A−B+C)x+A−CEquating Coefficient of like termsEquating Coefficient of like termsA+B=0.....(1)A−B+C=1.....(2)A−C=0.....(3)Solving and we getSolving(1),(2) and (3),we getA=13B=−13C=13∴x(x−1)(x2+x+1)=13(x−1)+−13x+13x2+x+1=13(x−1)+13[−x+1x2+x+1]=13(x−1)−13[x−1x2+x+1]=13(x−1)−16[2x−2x2+x+1]=13(x−1)−16[2x+1x2+x+1]−16×−3x2+x+1=13(x−1)−16[2x+1x2+x+1]+12×1x2+x+1∴I=13∫dxx−1−16∫(2x+1)dxx2+x+1+12∫dxx2+x+14−14+1 Putting x Putting x2+x+1=t⇒(2x+1)dx=dt log log∴I=13 log |x−1|−16 log|t|+12∫dx(x+12)2+(32)2 log log tan=13 log|x−1|−16 log|x2+x+1|+12[23 tan−1(x+1232)]+C log log tan=13 log |x−1|−16 log|x2+x+1|+13 tan−1(2x+13)+C
∫ cos4 2x dx
cosec ∫ sec x cosec xlog (tanx) dx
∫ em sin-1 x1-x2 dx
∫ x-3x2+2x-4dx
∫x1−xdx is equal to
dx ∫1x+x+1 dx