English

∫ X − 1 3 X 2 − 4 X + 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
Sum

Solution

\[\int\left( \frac{x - 1}{3 x^2 - 4x + 3} \right)dx\]
\[x - 1 = A\frac{d}{dx}\left( 3 x^2 - 4x + 3 \right) + B\]
\[x - 1 = A \left( 6x - 4 \right) + B\]
\[x - 1 = \left( 6 A \right) x + B - 4 A\]

Comparing the Coefficients of like powers of x

\[\text{6 } A = 1\]
\[A = \frac{1}{6}\]
\[B - \text{ 4 A }= - 1\]
\[B - 4 \times \frac{1}{6} = - 1\]
\[B = - 1 + \frac{2}{3}\]
\[B = \frac{1}{3}\]

\[Now, \int\frac{\left( x - 1 \right) dx}{3 x^2 - 4x + 3}\]
\[ = \int\left[ \frac{\frac{1}{6}\left( 6x - 4 \right) + \frac{1}{3}}{3 x^2 - 4x + 3} \right]dx\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{3}\int\frac{dx}{3 x^2 - 4x + 3}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{x^2 - \frac{4}{3}x + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{x^2 - \frac{4}{3}x + \left( \frac{2}{3} \right)^2 \left( \frac{2}{3} \right)^2 + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 3} + \frac{1}{9}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 - \frac{4}{9} + 1}\]
\[ = \frac{1}{6}\int\frac{\left( 6x - 4 \right) dx}{3 x^2 - 4x + 13} + \frac{1}{9}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 + \left( \frac{\sqrt{5}}{3} \right)^2}\]
\[ = \frac{1}{6} \text{ log } \left| 3 x^2 - 4x + 3 \right| + \frac{1}{9} \times \frac{3}{\sqrt{5}} \text{ tan }^{- 1} \left( \frac{x^{- \frac{2}{3}}}{\frac{\sqrt{5}}{3}} \right) + C\]
\[ = \frac{1}{6} \text{ log } \left| 3 x^2 - 4x + 3 \right| + \frac{1}{3\sqrt{5}} \text{ tan}^{- 1} \left( \frac{3 x - 2}{\sqrt{5}} \right) + C\]
\[ = \frac{1}{6} \text{ log }\left| 3 x^2 - 4x + 3 \right| + \frac{\sqrt{5}}{15} \text{ tan }^{- 1} \left( \frac{3x - 2}{\sqrt{5}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 5 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×