Advertisements
Advertisements
Question
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
Sum
Solution
\[\int\left( \frac{x^4 + 1}{x^2 + 1} \right)dx\]
\[ = \int\left( \frac{x^4 - 1 + 1 + 1}{x^2 + 1} \right)dx\]
\[ = \int\left[ \frac{\left( x^4 - 1 \right)}{x^2 + 1} + \frac{2}{x^2 + 1} \right]dx\]
\[ = \int\left[ \frac{\left( x^2 - 1 \right)\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)} + \frac{2}{x^2 + 1} \right]dx\]
\[ = \int\left[ \left( x^2 - 1 \right) + \frac{2}{x^2 + 1} \right]dx\]
\[ = \frac{x^3}{3} - x + 2 \tan^{- 1} \left( x \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{1}{x (3 + \log x)} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int x \sin^3 x\ dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]