English

∫ 3 + 2 Cos X + 4 Sin X 2 Sin X + Cos X + 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\left( \frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \right)dx\]
\[\text{ Let 3 }+ 2 \cos x + 4 \sin x = A \left( 2 \sin x + \cos x + 3 \right) + B \left( 2 \cos x - \sin x \right) + C\]
\[ \Rightarrow 3 + 2 \cos x + 4 \sin x = \left( 2A - B \right) \sin x + \left( A + 2B \right) \cos x + 3A + C\]

Comparing the coefficients of like terms

\[2A - B = 4 . . . \left( 1 \right)\]
\[A + 2B = 2 . . . (2)\]
\[3A + C = 3 . . . (3)\]

Multiplying eq (1) by 2 and adding it to eq (2) we get ,

\[\Rightarrow 4A - 2B + A + 2B = 8 + 2\]
\[ \Rightarrow 5A = 10\]
\[ \Rightarrow A = 2\]

Putting value of A = 2 in  eq (1)

\[\Rightarrow 2 \times 2 - B = 4\]
\[ \Rightarrow B = 0\]
\[\text{ Putting  value of   A   in eq (3) }\]
\[ \Rightarrow 3 \times 2 + C = 3\]
\[ \Rightarrow C = - 3\]

\[\therefore I = ∫ \left[ \frac{2 \left( 2 \sin x + \cos x + 3 \right) - 3}{2 \sin x + \cos x + 3} \right]dx\]
\[ = 2\ ∫   dx - 3\ ∫ \frac{1}{2 \sin x + \cos x + 3}dx\]
\[\text{ Substituting sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and }\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = 2\ ∫   dx - 3\ ∫  \frac{1}{2 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + 3}dx\]
\[ = 2\  ∫   dx - 3\ ∫  \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{4 \tan \left( \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right) + 3 \left( 1 + \tan^2 \frac{x}{2} \right)}dx\]
\[ = 2\  ∫   dx - 3\ ∫ \frac{\sec^2 \left( \frac{x}{2} \right)}{2 \tan^2 \left( \frac{x}{2} \right) + 4 \tan \left( \frac{x}{2} \right) + 4} dx\]
\[ = 2\ ∫   dx - \frac{3}{2}\ ∫ \frac{\sec^2 \left( \frac{x}{2} \right)}{\tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right) + 2}dx\]
\[\text{  Putting tan } \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2dt\]
\[ \therefore I = 2\ ∫  dx - \frac{3}{2}\ ∫ \frac{2}{t^2 + 2t + 2} dt\]
\[ = 2\ ∫   dx - 3\ ∫  \frac{1}{t^2 + 2t + 1 + 1}dt\]
\[ = 2\ ∫   dx - 3\ ∫  \frac{1}{\left( t + 1 \right)^2 + \left( 1 \right)^2}dt\]
\[ = 2x - \frac{3}{1} \tan^{- 1} \left( \frac{t + 1}{1} \right) + C\]
\[ = 2x - 3 \tan^{- 1} \left( \tan \frac{x}{2} + 1 \right) + C \left[ \because t = \tan \frac{x}{2} \right]\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 3 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \cos^5 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×